Tetrahedron Letters 50 (2009) 5015-5017

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of (pentacarbonyl)tungstate(-1) and (pentacarbonyl)molybdate(-1) dinucleotides

Ondrej Pav, Marvin H. Caruthers *

Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA

ARTICLE INFO

Article history: Received 4 May 2009 Accepted 16 June 2009 Available online 21 June 2009

ABSTRACT

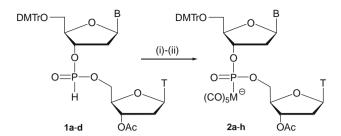
New methods for preparation of metallo dinucleotides with transition metals directly bonded to phosphorus are presented. (Pentacarbonyl)tungstate(-1) and (pentacarbonyl)molybdate(-1) dimers are prepared by the reaction of dinucleotide-H-phosphonate with M(CO)₅(THF) (M = W, Mo). These syntheses can be completed in solution or on solid-phase.

© 2009 Published by Elsevier Ltd.

1. Introduction

DNA, apart from being a natural biological information carrier, has also been shown to be highly useful as building material in the field of nanotechnology. Molecular recognition, self-assembly, and predictable structure make DNA a particularly promising candidate for constructing complex nanostructures.¹⁻⁴ Another application is to use DNA as a nanowire for connecting quantum devices to macroscopic electrodes or other devices.^{5,6} The deposition of silver,⁷ gold,⁸ platinum,^{5,9} and palladium^{10,11} metal on DNA has been investigated as a potential approach for creating conductive nanowires. Incorporation of transition metal-containing moieties to oligonucleotides has also been used for the study of DNA-mediated energy and electron transfer processes¹² as well as the development of DNA hybridization probes or sensors.¹³⁻¹⁶ Moreover, metalloimmunoassays involving carbonyl transition metal complexes conjugated to biomolecules have successfully demonstrated the detection of such complexes in biological samples using FTIR in the picomole range.^{17,18} Thus, metallocarbonyl oligonucleotides would be of potential interest in nanotechnology as nanowires or other nanochemical devices and also in biology as probes or biosensors.

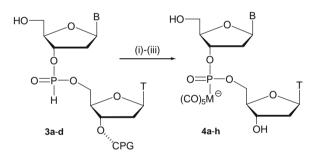
The preparation of dBdT (B = A, T) dinucleotides having (pentacarbonyl)tungsten and (dicarbonyl)(η^5 -cyclopentadienyl)manganese complexes joined covalently to phosphorus was reported previously.^{19,20} Dinucleotide-phosphite triesters were prepared by the phosphoroamidite condensation method and oxidized with W(CO)₅)(η^2 -cis-cyclooctene) and Mn(CO)₂)(η^5 -cyclopentadienyl)(THF), respectively. However, the reaction of dinucleotidephosphite triesters with metal complexes in solution and on solid-phase afforded products in low yield (~25%). Therefore, we decided to change synthesis strategies and employ H-phosphonate chemistry.


Simple dialkylphosphites react with $M(CO)_6$ (M = W, Mo) under heating to afford appropriate (pentacarbonyl)tungstate and (pentacarbonyl)molybdate derivatives.^{21,22} Under the same conditions, we did not observe formation of dinucleotide-(pentacarbonyl)tungstate and (pentacarbonyl)molybdate derivatives. Therefore we used a protocol established earlier for the synthesis of boranophosphate oligonucleotides.²³ Dinucleotide-H-phosphonates²⁴ 1a-d were activated with N,O-bis(trimethylsilyl)acetamide (BSA) and then treated with M(CO)₅(THF) (Scheme 1). By this simple method we prepared all eight (pentacarbonyl)tungstate (2a-d) and (pentacarbonyl)molybdate (**2e-h**) dimers in good yields (Scheme 1). The ³¹P NMR spectra of (pentacarbonyl)tungstate (2a-d) and (pentacarbonyl)molybdate (2e-h) dimers indicated formation of metal-phosphorus bond with signals at \sim 105 ppm and \sim 130 ppm, respectively. Moreover, (pentacarbonyl)tungstate dimers 2a-d exhibited characteristic $J({}^{31}P-{}^{183}W)$ coupling constants equal to ~178 Hz (natural abundance of ¹⁸³W is 14.3%).

The next step in extending this procedure to oligonucleotides was to determine if the method would be applicable on automated synthesis of oligonucleotides on solid-phase. Thus dinucleotide-H-phosphonates²⁴ **3a–d** were synthesized on dT-Q-linker support²⁵ in the DMT OFF form, and treated with BSA and M(CO)₅(THF) (M = W, Mo) in THF. Release from the support with aqueous ammonia afforded fully deprotected (pentacarbonyl)tungstate (**4a–d**) and (pentacarbonyl)molybdate (**4e–h**) dimers in good yields (Scheme 2).

Under basic conditions, we observed hydrolysis of dimers **4a–h** to appropriate dinucleoside-phosphates and cleavage of internucleotide linkages in various amounts. In general, (pentacarbonyl)molybdate dimers **4e–h** were less stable in aqueous ammonia than (pentacarbonyl)tungstate dimers **4a–d** (Scheme 2). Moreover, metallo dinucleotides were rapidly cleaved with strong bases and fluoride anions. Based on these results, synthesis of longer, mixed-sequence oligonucleotides will require the introduction of new protecting system that do not use either basic con-

^{*} Corresponding author. Tel.: +1 303 492 6095; fax: +1 303 492 5894. *E-mail address:* marvin.caruthers@colorado.edu (M.H. Caruthers).


^{0040-4039/\$ -} see front matter @ 2009 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2009.06.089

Entry	Substrate		F	Yield ^a		
	В	No.	В	Μ	No.	(%)
1	A ^{Bz}	1a	A ^{Bz}	W	2a	66
2	Т	1b	Т	W	2b	79
3	CBz	1c	CBz	W	2c	56
4	G ^{iBu}	1d	G^{iBu}	W	2d	67
5	A ^{Bz}	1a	A ^{Bz}	Мо	2e	54
6	Т	1b	Т	Мо	2f	62
7	CBz	1c	CBz	Мо	2g	49
8	G ^{iBu}	1d	G ^{iBu}	Мо	2h	58

^a Isolated yield.

Scheme 1. Reagents and conditions: (i) BSA, THF, 10 min, rt; (ii) $M(CO)_5(THF)$, THF, M = W 8 h, rt; M = Mo 16 h, 55 °C.

Entry	Substrate		F	Yield ^a		
	В	No.	В	Μ	No.	(%)
1	A ^{Bz}	3a	A ^{Bz}	W	4a	85
2	Т	3b	Т	W	4b	92
3	CBz	3c	CBz	W	4c	79
4	G ^{iBu}	3d	G ^{iBu}	W	4d	78
5	A ^{Bz}	3a	A ^{Bz}	Мо	4e	52
6	Т	3b	Т	Мо	4f	59
7	CBz	3c	CBz	Мо	4g	51
8	G ^{iBu}	3d	G ^{iBu}	Мо	4h	68

^a Yield was determined by HPLC.

Scheme 2. Reagents and conditions: (i) BSA, THF, 10 min, rt; (ii) $M(CO)_5(THF)$, THF, M = W 8 h, rt; M = Mo 16 h, 55 °C; (iii) aq NH₃, B = T 20 min rt; B = (A^{Bz}, C^{Bz}, Gi^{Bu}) 2 h, 55 °C.

ditions or fluoride anion cleavage for deprotection of nucleobases and release from the support.

In conclusion, we have successfully employed H-phosphonate chemistry for the preparation of (pentacarbonyl)tungstate and (pentacarbonyl)molybdate dinucleotides both in solution and on solid-phase. A search for new nucleobase protecting groups and a support linker which would allow synthesis of longer metallo oligonucleotides is under way.

2. Experimental

2.1. Preparation of M(CO)₅(THF)²⁶

0.1~M solution of $M(CO)_6$ in THF was irradiated for 1 h with a high-pressure mercury lamp (450 W) and used without further purification.

2.2. Preparation of metallo dinucleotides 2a-h in solution

BSA (2.5 mmol) was added under stirring to a solution of dinucleotide-H-phosphonate (**1a-d**, 0.5 mmol) in THF (5 ml). After 10 min, 0.1 M M(CO)₅(THF) (2.5 mmol) in THF was added. The mixture was stirred for 8 h at rt (M = W), or heated for 16 h at 55 °C (M = Mo). The reaction was quenched by addition of 2 M TEAB (1 ml). Product was purified by chromatography on silica gel (elution with a gradient of 0–20% methanol in chloroform).

2.3. Preparation of metallo dinucleotides 4a-h on solid-phase

Dinucleotide-H-phosphonates (**3a–d**) were synthesized on dT-Q-linker CPG (1 µmol) in DMT OFF form. BSA (50 µl) was added to a suspension of the support in THF (1 ml) and after 10 min 0.1 M M(CO)₅(THF) (2.5 ml) in THF was added. The mixture was shaken for 8 h at rt (M = W) or heated for 16 h at 55 °C (M = Mo). The support was washed with THF (3 × 1 ml) and treated with aqueous ammonia [B = T 20 min, rt; B = (A^{Bz} , C^{Bz} , G^{iBu}) 2 h, 55 °C]. Ammonia was evaporated and the products were purified by preparative HPLC (A = 0.05 M TEAA, B = acetonitrile; A to 50% B in 50 min).

Acknowledgments

This work was supported by the University of Colorado. We thank Richard Shoemaker and Shuji Kato for technical assistance in the Central Analytical Laboratory.

Supplementary data

Supplementary data (complete spectral data, copies of NMR spectra, and HPLC chromatograms of dimers prepared on solid-phase) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.06.089.

References and notes

- 1. Sherman, W. B.; Seeman, N. C. Nano Lett. 2004, 4, 1203-1207.
- 2. Liu, W.; Wang, X.; Wang, T.; Sha, R.; Seeman, N. C. Nano Lett. 2008, 8, 317-322.
- 3. Sahu, S.; La Bean, T. H.; Reif, J. H. Nano Lett. 2008, 8, 3870-3878.
- Yan, H.; La Bean, T. H.; Feng, L.; Reif, J. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 8103–8108.
- Ford, W. E.; Harnack, O.; Yasuda, A.; Wessels, J. M. Adv. Mater. 2001, 13, 1793– 1797.
- 6. Geppert, L. IEEE Spectrum 2000, 37, 46-51.
- 7. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775-778.
- Keren, K.; Krueger, M.; Gilad, R.; Ben-Yoseph, G.; Sivan, U.; Braun, E. Science 2002, 297, 72–75.
- 9. Seidel, R.; Mertig, M.; Pompe, W. Surf. Interface Anal. 2002, 33, 151–154.
- Richter, J.; Seidel, R.; Kirsch, R.; Mertig, M.; Pompe, W.; Plaschke, J.; Schackert, H. K. Adv. Mater. 2000, 12, 507–510.
- Richter, J.; Mertig, M.; Pompe, W.; Monch, I.; Schackert, H. K. *Appl. Phys. Lett.* 2001, 78, 536–538.
 Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.; Bossmann, S. H.; Turro, N.
- J. Barton, J. K. Science **1993**, 262, 1025–1029.
 J. Barton, J. K. Science **1993**, 262, 1025–1029.
- 13. Ihara, T.; Maruo, Y.; Takenaka, S.; Takagi, M. Nucleic Acids Res. **1996**, 24, 4273–4280.
- 14. Beilstein, A. E.; Grinstaff, M. W. J. Organomet. Chem. 2001, 637, 398-406.
- Yu, C. J.; Wan, Y.; Yowanto, H.; Li, C.; Tao, C.; James, M. D.; Tan, C. L.; Blackburn, G. F.; Meade, T. J. J. Am. Chem. Soc. 2001, 123, 11155–11161.
- 16. Anne, A.; Blanc, B.; Moiroux, J. Bioconjugate Chem. 2001, 12, 396-405.

- Vessieres, A.; Salmain, M.; Brossier, P.; Jaouen, G. *J. Pharm. Biomed. Anal.* 1999, *21*, 625–633.
 Varenne, A.; Vessieres, A.; Salmain, M.; Durand, S.; Brossier, P.; Jaouen, G. *Anal. Biochem.* 1996, *242*, 172–179.
- 19. Dalla Riva Toma, J. M.; Bergstrom, D. E. J. Org. Chem. **1994**, 59, 2418–2422.
- Bergstrom, D. E.; Beal, P.; Lind, R. Nucleosides Nucleotides 1989, 8, 1061–1063.
 Kuramshin, A. I.; nikolaev, A. A.; Cherkasov, R. A. Russ. J. Org. Chem. 2004, 40, 1744-1749.
- Xi, C.; Liu, Y.; Lai, C.; Zhou, L. Inorg. Chem. Commun. 2004, 7, 1202–1204.
 Higson, A. P.; Sierzchala, A.; Brummel, H.; Zhao, Z.; Caruthers, M. H. Tetrahedron Lett. 1998, 39, 3899–3902.
- 24. Stromberg, R.; Stawinski, J. In Current Protocols in Nucleic Acid Chemistry; John Wiley & Sons: New York, 2000; pp 3.4.1–3.4.11.
 Pon, R. T.; Yu, S. *Nucleic Acids Res.* 1997, 25, 3629–3635.
 Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. *J. Am. Chem.*
- Soc. 2005, 127, 2709-2716.